Image Understanding Support Method for Visually Impaired Users via Multi-Region Caption Generation

Yiling XU, Junjie SHAN, Megumi Yasuo, and Yoko Nishihara

Ritsumeikan University
Ritsumeikan Global Innovation Research Organization

Introduction & Motivation

• Problem:

- OrCam MyEye, Envision Glasses, Seeing Al.....
- A single descriptive sentence is often insufficient for visually impaired users to understand complex images.

Our Goal:

 To develop an interactive system that provides structured, multi-regional descriptions to help users build a richer, more detailed imagine picture.

There's a desk, a chair and a bed in the room.

Batters, catchers and referees gather at home base.

The people in the meeting.

Our Contributions

- Validated the "sub-image captioning approach" (Method 1 and 2) for enhancing image accessibility.
- Proposed and demonstrated the superiority of a semantically-aware method (Method 2).
- Introduced a novel evaluation method using user sketches and LLM similarity scores to quantify comprehension.

Proposed System: Overview

"Multi-Region Caption Generation"

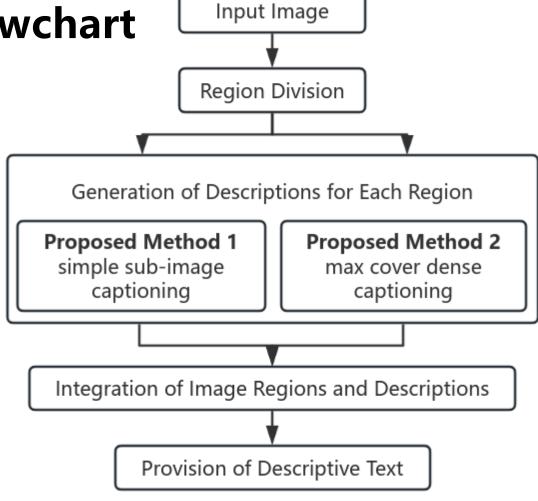
- Intuitive description
 - -> more detail
- Construct spatial relationships
 - -> easier to imagine

sky	hill	hill
lake	lake	lake
chair	table	chair

Proposed System: Flowchart

• Method 1: (simple sub-image captioning)

 Method 2: (max cover dense captioning)



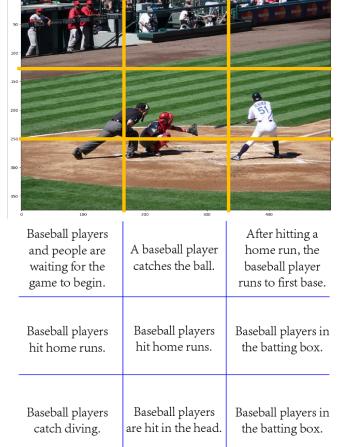
Proposed Method 1: Simple Sub-image

Captioning

• (1) divide the input image into equal grids

• (2)generate a separate description for each area

using ClipCap model¹



¹Ron Mokady, Amir Hertz, and Amit H Bermano. Clipcap: Clip prefix for image captioning. arXiv preprint arXiv:2111.09734, 2021.

Proposed Method 2: Max Cover Dense

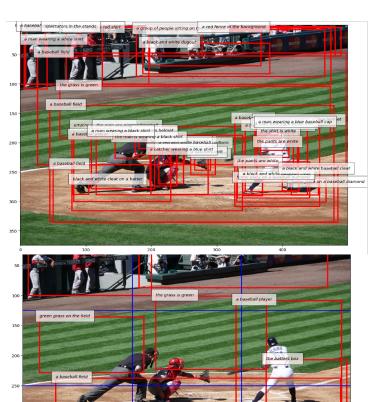
Captioning

• (1)Generate a large number of detailed candidate regions from the image

using densecap model¹

• (2) Selecting the best description according to the grid structure

• IoU (Intersection over Union)
• B_{grid}: blue grid
B_{candidate}: red boxes $IoU = \frac{Area(B_{grid} \cap B_{candidate})}{Area(B_{grid} \cup B_{candidate})}$



¹Justin Johnson, Andrej Karpathy, and Li Fei-Fei. Densecap: Fully convolutional localization networks for dense captioning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4565–4574, 2016.

Proposed Method 2: Max Cover Dense

Captioning

• (1)Generate a large number of detailed candidate regions from the image

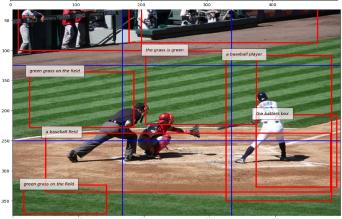
using densecap model¹

• (2) Selecting the best description according to the grid structure

• IoU (Intersection over Union)

• B_{grid} : blue grid $B_{candidate}$: red boxes $IoU = \frac{Area(B_{grid} \cap B_{candidate})}{Area(B_{grid} \cup B_{candidate})}$

People standing on the grass (IoU:0.64)	The people in the bleachers (IoU:0.39)	The people in the bleachers (IoU:0.32)
Green grass in the field (IoU:0.58)	A man in a base- ball uniform (IoU:0.44)	A man in a base- ball glove (IoU:0.48)
Green grass in the field (IoU:0.29)	Baseball field (IoU:0.29)	Batter box (IoU:0.36)



¹Justin Johnson, Andrej Karpathy, and Li Fei-Fei. Densecap: Fully convolutional localization networks for dense captioning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4565–4574, 2016.

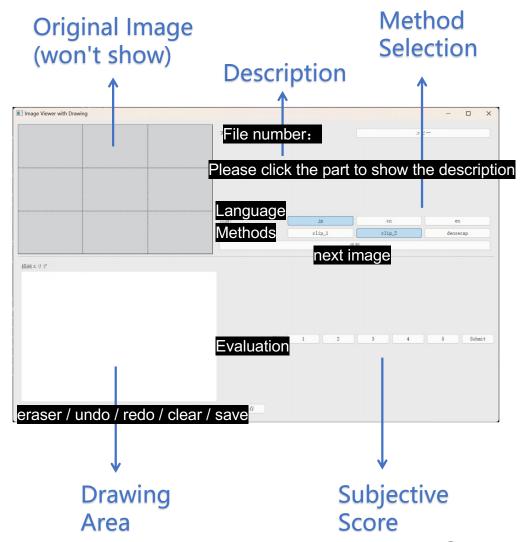
Evaluation Experiment

Methods:

- beseline:
 - simply using ClipCap model
- method1
- method2

• Task:

 20 participants drew sketches based only on the generated text descriptions.



Experiment Data

extract images from 10 different categories

categories	image content
01_ski	Skiing people and mountains
02_baseball	Baseball players in the game
03_traffic light	Traffic lights in the city
04_zebra	Zebras in grasslands and zoos
05_street sign	Street signs
06_StanfordCar	Cars (specific types)
07_Country211	Scenery of various countries
08_Food101	Various dishes on a plate
09_room	Furnished room
10_coco	Everyday scenery

Evaluation Experiment-Metrics

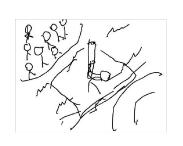
Subjective Score

• "Imaginability": Participants rated how easily they could imagine the scene on a 5-point scale.

reference image sketch score

Objective Score

- "Perception & Comprehension"
- An LLM (gemini-2.5-flash) calculated a similarity score between the user's sketch and the original image.
- Repeat 20 times to get an average.



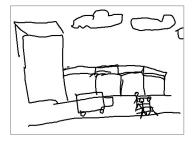
88

15

Objective Evaluation

Prompt

-Instruction.....
- Content Consistency:(40 points)
- Compositional Consistency:(40 points)
- Accuracy and Completeness: (20 points)
-Instruction.....



Mean score of 20 times

39.35

56

60.95

Result1: Subjective Score

Method	Mean Score
Baseline	3.19
Method 1	3.27
Method 2	3.88

Subjective evaluation of each method in all categories

Information from the Method 2 was the easiest to construct an image.

Result2: Objective Score

- Method 2 achieved the highest score in 8 out of 10 categories.
- Method 2 consistently outperformed the others, especially for complex scenes with small but important objects (like a 'street sign').
- As exceptions, baseline was the highest score in the "08_Food101" category, and Method 1 was the highest score in the "09_room" category.

categories	Baseline	Method 1	Method 2
01_ski	32.96	32.23	36.61
02_baseball player	25.13	33.28	37.26
03_traffic light	27.85	34.96	35.18
04_zebra	34.18	15.13	34.32
05_street sign	14.03	32.55	37.51
06_StanfordCars	21.36	15.56	37.87
07_Country211	17.43	18.96	26.82
08_Food101	21.39	14.48	7.33
09_room	20.69	30.86	23.75
10_coco	29.79	23.16	31.67
Mean	24.48	25.12	30.83
ANOVA		p=0.052	

Discussion: One Size Does Not Fit All

 Complex Scene (e.g., Baseball game): Method 2 is best. It captures multiple actors and their spatial relationships. [most images]

 Single Subject (e.g., a plate of food): A single sentence (Baseline) can sometimes be more effective. Dividing it can add unnecessary complexity.

 Structured Scene (e.g., a room): The simple grid (Method 1) can be effective at conveying the spatial layout intuitively.

Conclusion

Conclusion:

- Providing multiple, structured descriptions is more effective than a single sentence, and a semanticallyaware approach (Method 2) is the most promising.
- The optimal description strategy is content-dependent.

